

 Queues

 QUEUES

 Queue is a non-primitive linear data structure that permits insertion of an element at one
end and deletion of an element at the other end. The end at which the deletion of an element
take place is called front, and the end at which insertion of a new element can take place is
called rear. The deletion or insertion of elements can take place only at the front and rear
end of the list respectively.
 The first element that gets added into the queue is the first one to get removed from the list.
Hence, Queue is also referred to as First-In-First-Out (FIFO) list. The name ‘Queue’ comes
from the everyday use of the term. Consider a railway reservation booth, at which we have
to get into the reservation queue. New customers got into the queue from the rear end,
whereas the customers who get their seats reserved leave the queue from the front end. It
means the customers are serviced in the order in which they arrive the service center (i.e.
first come first serve type of service). The same characteristics apply to our Queue. Fig. 1.
shows the pictorial representation of a Queue.

10 20 30 40 50 60 70 80

 Front Rear

Fig. (1) : Pictorial representation of a Queue

 In fig (1), 10 is the first element and 80 is the last element added to the Queue. Similarly, 10 would
be the first element to get removed and 80 would be the last element to get removed.

Figures 2(a) to 2(d) shows queue graphically during insertion operation :

 F = -1 and R = -1

 0 1 2 3 4 5 6
 F
R

Fig. 2(a) Empty Queue

 F = 0 and R = 0

20

 F R

Fig. 2(b) One Element Queue

 F = 0 and R = 1

20 30

F R

Fig. 2(c) Two Element Queue

 F = 0 and R = 2

20 30 40

 F R

Fig. 2(d) Three Element Queue

It is clear from the above figures that whenever we insert an element in the queue,

the value of Rear is incremented by one i.e.

 Rear = Rear + 1

Also, during the insertion of the first element in the queue we always incremented

the Front by one i.e.

 Front = Front + 1

Afterwards the Front will not be changed during the entire operation. The following

figures show Queue graphically during deletion operation :

 F = 1 and R = 2

 30 40

 F R

 Fig. 2(e) One Element (20) Deleted from Front

 F = 2 and R = 2

 40

 F R

Fig. 2(f) Second Element (30) Deleted from Front

This is clear from Fig. 2(e) and 2(f), that whenever an element is removed from the queue,

the value of Front is incremented by one i.e.,

 Front = Front + 1

Now, if we insert any element in the queue, the queue will look like :

 F = 2 and R = 3

 40 50

 F R

Fig. 2(g) Insertion after Deletion

Sequential implementation of Linear queues

Queues can be implemented in two ways :

1. Static implementation (using arrays)

2. Dynamic implementation (using pointers)

Static implementation :

 Static implementation of Queue is represented by arrays. If Queue is implemented using
arrays, we must be sure about the exact number of elements we want to store in the queue,
because we have to declare the size of the array at design time or before the processing
starts. In this case, the beginning of the array will become the front for the queue and the last
location of the array will act as rear for the queue. Fig. (3) shows the representation of a
queue as an array.

Fig. (3) Representation of a Queue as an array

The following relation gives the total number of elements present in the queue, when

implemented using arrays :

 rear – front + 1

 arr[0] arr[1] arr[2] arr[3] arr[4] arr[5] arr[6] arr[7]

40 80 60 50 30 20 10 70

 Front Rear

 Also note that if front > rear, then there will be no element in the queue or queue is

empty.

OPERATIONS ON A QUEUE

The basic operations that can be performed on queue are :

1. To Insert an element in a Queue

2. To Delete an element from a Queue.

3. To Traverse all elements of a Queue.

ALGORITHMS & FUNCTIONS FOR INSERTION AND DELETION IN A LINEAR QUEUE (USING

ARRAYS)

(1) Algorithm for Insertion in a Linear Queue

Let QUEUE[MAXSIZE] is an array for implementing the Linear Queue & NUM is the element
to be inserted in linear queue, FRONT represents the index number of the element at the beginning
of the queue and REAR represents the index number of the element at the end of the Queue.

Step 1 :If REAR = (MAXSIZE –1) : then

 Write : “Queue Overflow” and return

 [End of If structure]

Step 2 : Read NUM to be inserted in Linear Queue.

Step 3 : Set REAR := REAR + 1

Step 4 : Set QUEUE[REAR] := NUM
Step 5 : If FRONT = –1 : then
Set FRONT=0.
 [End of If structure]

Step 6 : Exit

Function for insertion in a linear queue (using arrays)

void lqinsert()

{

int num;

 if(rear==MAXSIZE-1)

 {

 printf("\nQueue is full (Queue overflow)");

 return;

 }

 printf("\nEnter the element to be inserted : ");

 scanf("%d",&num);

rear++; queue[rear]=num;

if(front==-1)

 front=0;

}

(2) Algorithm for Deletion from a Linear Queue

Let QUEUE[MAXSIZE] is an array for implementing the Linear Queue & NUM is the element
to be deleted from linear queue, FRONT represents the index number of the element at the beginning
of the queue and REAR represents the index number of the element at the end of the Queue.

Step 1 : If FRONT = -1 : then

 Write : “Queue Underflow” and return

 [End of If structure]

Step 2 : Set NUM := QUEUE[FRONT]

Step 3 : Write “Deleted item is : ”, NUM

Step 4 : Set FRONT := FRONT + 1.

Step 5 : If FRONT>REAR : then

 Set FRONT := REAR := -1.
 [End of If structure]

Step 6 : Exit

Function(Procedure) for Deletion from a Linear Queue

void lqdelete()

{

 if(front == -1)

 {

 printf("\nQueue is empty (Queue underflow)");

return;

 }

 int num; num=queue[front];

printf("\nDeleted element is : %d",num);

 front++;

if(front>rear)

 front=rear=-1;

}

Program 1 : Static implementation of Linear Queues using arrays

#include<stdio.h>

#include<conio.h>

#include<stdlib.h>

#define MAXSIZE 5

void initialize(); void

lqinsert(); void

lqdelete();

void lqtraverse();

int queue[MAXSIZE];

int front,rear;

void main()

{ clrscr();

initialize(); int

choice;

 while(1)

 {

clrscr();

 printf("\nSTATIC IMPLEMENTATION OF LINEAR QUEUE");

 printf("\n-------------------------------------");

 printf("\n1. Insert"); printf("\n2. Delete");

printf("\n3. Traverse"); printf("\n4. Exit");

printf("\n-------------------------------------");

printf("\n\nEnter your choice [1/2/3/4] : ");

 scanf("%d",&choice);

 switch(choice)

 {

 case 1 : lqinsert();

 break;

 case 2 : lqdelete();

 break;

 case 3 : lqtraverse();

 break;

 case 4 : exit(0); default :

printf("\nInvalid choice");

 }

 getch();

 }

}

// Function to initialize queue

void initialize()

{

 front=rear=-1;

}

// Function to insert an element into queue

void lqinsert()

{

int num; if(rear==MAXSIZE-

1)

 {

 printf("\nQueue is full (Queue overflow)");

 return;

 }

 printf("\nEnter the element to be inserted : ");

 scanf("%d",&num);

rear++; queue[rear]=num;

if(front==-1)

 front=0;

}

// Function for Delete an element from queue

void lqdelete()

{

 if(front==-1)

 {

 printf("\nQueue is empty (Queue underflow)");

 return;

 }

 int num; num=queue[front];

printf("\nDeleted element is : %d",num);

 front++;

if(front>rear)

 front=rear=-1;

}

1. // Function to display Queue

void lqtraverse()

{

 if(front==-1)

 {

 printf("\nQueue is empty (Queue underflow)");

return;

 }

 else

 {

 printf("\nQueue elements are : \n");

 for(int i=front;i<=rear;i++)

 printf("%d\t",queue[i]);

 }

}

DYNAMIC IMPLEMENTATION OF LINEAR QUEUE

ALGORITHM FOR INSERTION AND DELETION IN A LINEAR QUEUE (USING

POINTERS)

Let queue be a structure whose declarations looks like follows :

struct queue

{

int info;

struct queue *link;

}*start=NULL;

ALGORITHMS FOR INSERTION & DELETION IN A LINEAR QUEUE FOR DYNAMIC

IMPLEMENTATION USING LINKED LIST

 (1) Algorithm for inserting an element in a Linear Queue :
Let PTR is the structure pointer which allocates memory for the new node & NUM is the

element to be inserted into linear queue, INFO represents the information part of the node and
LINK represents the link or next pointer pointing to the address of next node. FRONT represents
the address of first node, REAR represents the address of the last node. Initially, Before inserting
first element in the queue, FRONT=REAR=NULL.

Step 1 : Allocate memory for the new node using PTR.

Step 2 : Read NUM to be inserted into linear queue.

Step 3 : Set PTR->INFO = NUM

Step 4 : Set PTR->LINK= NULL

Step 5 : If FRONT = NULL : then

 Set FRONT=REAR=PTR

 Else

Set REAR->LINK=PTR;

Set REAR=PTR;

 [End of If Else Structure]

 Step 6 : Exit

Function(Procedure) for Inserting an element in a Linear Queue :

void lqinsert()

{

 struct queue *ptr; int num; ptr=(struct

queue*)malloc(sizeof(struct queue));

printf("\nEnter element to be inserted in queue : ");

scanf("%d",&num); ptr->info=num; ptr-

>link=NULL;

 if(front==NULL)

 {

 front=ptr;

 rear=ptr;

 }

 else

 {

 rear->link=ptr;

 rear=ptr;

 }

}

 (2) Algorithm for Deleting a node from a Linear Queue :

Let PTR is the structure pointer which deallocates memory of the first node in the
linear queue & NUM is the element to be deleted from queue, INFO represents the
information part of the deleted node and LINK represents the link or next pointer of the
deleted node pointing to the address of next node. FRONT represents the address of first
node, REAR represents the address of the last node.
Step 1 : If FRONT = NULL : then

 Write ‘Queue is Empty(Queue Underflow)’ and return.

 [End of If structure]

 Step 2 : Set PTR = FRONT

Step 3 : Set NUM = PTR->INFO

Step 4 : Write ‘Deleted element from linear queue is : ‘,NUM.

Step 5 : Set FRONT = FRONT-
>LINK Step 6 : If FRONT = NULL :
then Set REAR = NULL.
 [End of If Structure].

Step 7 : Deallocate memory of the node at the beginning of queue using PTR.

Step 8 : Exit.

Function(Procedure) for deleting a node from a Linear Queue

void lqdelete()

{

if(front==NULL)

 {

 printf("\nQueue is empty (Queue underflow)");
return;
 }

 struct queue *ptr; int num; ptr=front;
num=ptr->info; printf("\nThe deleted
element is : %d",num);; front=front->link;
if(front==NULL)
 rear=NULL;
free(ptr);
 }

}

Program 2 : Dynamic implementation of linear queue using pointers

#include<stdio.h>

#include<conio.h> #include<stdlib.h>

struct queue

{

int info;

struct queue *link;

}*front,*rear;

void initialize();

void lqinsert(); void

lqdelete();

void lqtraverse();

void main()

{

int choice; initialize();

 while(1)

 {

clrscr();

 printf("\nDYNAMIC IMPLEMENTATION OF LINEAR QUEUE");

printf("\n1. Insert"); printf("\n2. Delete"); printf("\n3. Traverse");

printf("\n4. Exit"); printf("\n\nEnter your choice [1/2/3/4] : ");

 scanf("%d",&choice);

 switch(choice)

 {

 case 1: lqinsert();

 break;

 case 2: lqdelete();

 break;

 case 3: lqtraverse();

 break;

 case 4: exit(0);; default :

printf("\nInvalid choice");

 }

 getch();

}

}

// Function for initialize linear Queue

void initialize()

{

 front=rear=NULL;

}

// Function to insert element in Linear queue

void lqinsert()

{

 struct queue *ptr; int num; ptr=(struct

queue*)malloc(sizeof(struct queue));

printf("\nEnter element to be inserted in queue : ");

 scanf("%d",&num); ptr-

>info=num; ptr->link=NULL;

 if(front==NULL)

 {

 front=ptr;

 rear=ptr;

 }

 else

 {

 rear->link=ptr;

 rear=ptr;

 }

}

// Function to delete element from Linear queue

void lqdelete()

{

 if(front==NULL)

 {

 printf("\nQueue is empty (Queue underflow)");

 return;

 }

 struct queue *ptr; int num; ptr=front;

num=ptr->info; printf("\nThe deleted element

is : %d",num);; front=front->link;

if(front==NULL)

 rear=NULL;

free(ptr);

}

// Function to display Linear Queue void

lqtraverse()

{

struct queue *ptr;

if(front==NULL)

{

 printf("\nQueue is empty (Queue underflow)"); return;

}

else

{

ptr=front; printf("\n\nQueue elements

are : \n"); printf("\nROOT");

 while(ptr!=NULL)

 {

 printf(" -> %d",ptr->info); ptr=ptr-

>link;

 }

 printf(" -> NULL");

}

}

CIRCULAR QUEUES

 The queue that we implemented using an array suffers from one limitation. In that
implementation there is a possibility that the queue is reported as full (since rear has reached

the end of the array), even though in actuality there might be empty slots at the beginning of
the queue. To overcome this limitation we can implement the queue as a circular queue.
Here as we go on adding elements to the queue and reach the end of the array, the next
element is stored in the first slot the array (provided it is free). Suppose an array arr of n
elements is used to implement a circular queue we may reach arr[n-1]. We

cannot add any more elements to the queue since we have reached at the end of the array.
Instead of reporting the queue as full, if some elements in the queue have been deleted then
there might be empty slots at the beginning of the queue. In such a case these slots would
be filled by new elements being added to the queue. In short just because we have reached
the end of the array, the queue would not be reported as full. The queue would be reported
as full only when all the slots in the array stand occupied.
Figure (4) shows the pictorial representation of a circular queue.

 Rear

 Q[0]

 Front

 Q[4]

 Q[3] Q[2]

Fig. (4) : Pictorial representation of a circular queue

ALGORITHM FOR INSERTION AND DELETION IN A CIRCULAR QUEUE (USING ARRAYS)

(1) Algorithm for Insertion in a Circular Queue

Let CQUEUE[MAXSIZE] is an array for implementing the Circular Queue, where MAXSIZE
represents the max. size of array. NUM is the element to be inserted in circular queue, FRONT
represents the index number of the element at the beginning of the queue and REAR represents
the index number of the element at the end of the Queue.

Step 1 : If FRONT = (REAR + 1) % MAXSIZE :
then Write : “Queue Overflow” and return.
[End of If structure]
Step 2 : Read NUM to be inserted in Circular Queue.

Step 3 : If FRONT= -1 : then
Set FRONT = REAR =0.
 Else

 Set REAR=(REAR + 1) % MAXSIZE.

 [End of If Else structure]

Step 4 : Set CQUEUE[REAR]=NUM;
Step 5 : Exit

 50

 10 Q[1]

 40

 30 20

Function(Procedure) for Insertion in a Circular Queue using arrays:

void cqinsert()

{

 int num;
if(front==(rear+1)%MAXSIZE)
 {

 printf("\nQueue is Full(Queue overflow)");
return;
 }

 printf("\nEnter the element to be inserted in circular queue : ");
scanf("%d",&num); if(front==-1) front=rear=0; else
rear=(rear+1) % MAXSIZE; cqueue[rear]=num;
}

(2) Algorithm for Deletion from a Linear Queue :

Let CQUEUE[MAXSIZE] is an array for implementing the Circular Queue, where
MAXSIZE represents the max. size of array. NUM is the element to be deleted from circular
queue, FRONT represents the index number of the first element inserted in the Circular
Queue and REAR represents the index number of the last element inserted in the Circular
Queue.

Step 1 : If FRONT = - 1 : then

 Write : “Queue Underflow” and return.

 [End of If Structure]

Step 2 : Set NUM = CQUEUE[FRONT].

Step 3 : Write ‘Deleted element from circular queue is : ",NUM.

Step 4 : If FRONT = REAR : then
Set FRONT = REAR = -1;
Else

 Set FRONT = (FRONT + 1) % MAXSIZE.

Step 5 : Exit

Function(Procedure) to Delete an element from a Queue void

cqdelete()

{

 int num;

 if(front==-1)

 {

 printf("\nQueue is Empty (Queue underflow)");

return;

 }

 num=cqueue[front]; printf("\nDeleted element from circular

queue is : %d",num);

 if(front==rear)

front=rear=-1; else

 front=(front+1)%MAXSIZE;

}

Program 3 : Static implementation of Circular queue using arrays

#include<stdio.h>

#include<conio.h>

#include<stdlib.h>

#define MAXSIZE 5
void cqinsert(); void
cqdelete();
void cqdisplay();

int cqueue[MAXSIZE]; int

front=-1,rear=-1;

void main()

{

int choice;

while(1)

{

clrscr();

 printf("\nSTATIC IMPLEMENTATION OF CIRCULAR QUEUE");

 printf("\n-------------------------------------");

 printf("\n1. Insert");

printf("\n2. Delete");

printf("\n3. Traverse");

printf("\n4. Exit");

 printf("\n-------------------------------------");

 printf("\n\nEnter your choice [1/2/3/4] : ");

 scanf("%d",&choice);

 switch(choice)

 {

 case 1 : cqinsert();

 break;

 case 2 : cqdelete();

break;

 case 3 : cqdisplay();

break; case 4 : exit(0); default :

printf("\nInvalid choice");

 }

 getch();

 }

}

// Function to insert element in the Circular Queue void

cqinsert()

{

 int num;

if(front==(rear+1)%MAXSIZE)

 {

 printf("\nQueue is Full(Queue overflow)");

return;

 }

 printf("\nEnter the element to be inserted in circular queue : ");

scanf("%d",&num); if(front==-1) front=rear=0; else

 rear=(rear+1) % MAXSIZE;

 cqueue[rear]=num;

}

// Function to delete element from the circular queue void

cqdelete()

{

 int num;

 if(front==-1)

 {

 printf("\nQueue is Empty (Queue underflow)");

return;

 }

 num=cqueue[front]; printf("\nDeleted element from circular

queue is : %d",num);

 if(front==rear)

front=rear=-1; else

 front=(front+1)%MAXSIZE;

}

// Function to display circular queue

void cqdisplay()

{

 int i;

 if(front==-1)

 {

 printf("\nQueue is Empty (Queue underflow)");

return;

 }

 printf("\n\nCircular Queue elements are : \n");

for(i=front;i<=rear;i++) printf("\ncqueue[%d] :

%d",i,cqueue[i]); if(front>rear)

 {

 for(i=0;i<=rear;i++) printf("cqueue[%d]

: %d\n",i,cqueue[i]);

for(i=front;i<MAXSIZE;i++)

printf("cqueue[%d] : %d\n",i,cqueue[i]);

 }

}

Advantages of Circular queue over linear queue :

In a linear queue with max. size 5, after inserting element at the last location (4) of
array, the elements can’t be inserted, because in a queue the new elements are always
inserted from the rear end, and rear here indicates to last location of the array (location with
subscript 4) even if the starting locations before front are free. But in a circular queue, if there
is element at the last location of queue, then we can insert a new element at the beginning
of the array.

PRIORITY QUEUE

 A priority queue is a collection of elements where the elements are stored according to their priority

levels. The order in which the elements get added or removed is decided by the priority of the

element.

Following rules are applied to maintain a priority queue :

(1) The element with a higher priority is processed before any element of lower priority.

(2) If there are elements with the same priority, then the element added first in the queue would

get processed.

Priority queues are used for implementing job scheduling by the operating system where jobs

with higher priorities are to be processed first. Another application of Priority queues is simulation

systems where priority corresponds to event times.

 There are mainly two ways of maintaining a priority queue in memory. One uses a oneway list, and

the other uses multiple queues. The ease or difficultly in adding elements to or deleting them from a

priority queue clearly depends on the representation that one chooses.

One-way List Representation of a Priority Queue :

One way to maintain a priority queue in memory is by means of a one-way list, as follows :

(a) Each node in the list will contain three items of information; an information field INFO, a priority

number PRN and a link number LINK. (b) A node X precedes a node Y in the list

(I) When X has higher priority then Y and
(II) When both have the same priority but X is added to the list before Y. This means that the

order in the one-way list corresponds to the order of the priority queue.

Priority queues will operate in the usual way : the lower the priority number, the higher the

priority.

Array representation of a Priority Queue :

 Another way to maintain a priority queue in memory is to use a separate queue for each level of

priority (or for each priority number). Each such queue will appear in its own circular array and must

have its own pair of pointers, FRONT and REAR. In fact, each queue is allocated the same amount

of space, a two-dimensional array QUEUE can be used instead of the linear arrays.

 Out of these two ways of representing a Priority Queue, the array representation of a priority queue

is more time-efficient than the one way list. This is because when adding an element to a one-way

list, one must perform a linear search on the list. On the other hand, the one-way list representation

of the priority queue may be more space-efficient than the array representation. This is because in

using the array representation overflow occurs when the number of elements in any single priority

level exceeds the capacity for that level, but in using the one-way list, overflow occurs only when the

total number of elements exceeds the total capacity. Another alternative is to use a linked list for each

priority level.

APPLICATIONS OF QUEUES :

1. Round Robin technique for processor scheduling is implemented using queues.

2. All types of customer service (like railway ticket reservation) center software’s are designed

using queues to store customers information.

Printer server routines are designed using queues. A number of users share a printer using printer

server (a dedicated computer to which a printer is connected), the printer server then spools all the

jobs from all the users, to the server’s hard disk in a queue. From here jobs are printed one-by-one

according to their number in the queue.

	Fig. 2(b) One Element Queue
	Fig. 2(c) Two Element Queue
	Fig. 2(d) Three Element Queue
	Rear = Rear + 1
	Front = Front + 1
	Fig. 2(f) Second Element (30) Deleted from Front

	Sequential implementation of Linear queues
	rear – front + 1
	OPERATIONS ON A QUEUE
	ALGORITHMS & FUNCTIONS FOR INSERTION AND DELETION IN A LINEAR QUEUE (USING ARRAYS)
	Function for insertion in a linear queue (using arrays)
	Function(Procedure) for Deletion from a Linear Queue

	DYNAMIC IMPLEMENTATION OF LINEAR QUEUE
	ALGORITHM FOR INSERTION AND DELETION IN A LINEAR QUEUE (USING POINTERS)
	ALGORITHMS FOR INSERTION & DELETION IN A LINEAR QUEUE FOR DYNAMIC IMPLEMENTATION USING LINKED LIST
	PRIORITY QUEUE

